Biología

3.4218181818163 (1375)
Publicado por astro 28/02/2009 @ 21:03

Tags : biología, ciencias de la vida, ciencia

últimas noticias
Expertos europeos abordan desde mañana en Valencia avances en la ... - Europa Press
"Muchos de estos avances se han realizado gracias al desarrollo y estudio mediante técnicas de biología no invasiva y biología molecular de modelos de sordera en ratón y otros animales de laboratorio", según Varela. "En numerosas ocasiones, estas...
El Premio Nobel de Medicina Rolf Zinkernagel recibe el premio en ... - Europa Press
Esta sociedad cuenta con miembros en ocho hospitales de la Comunidad de Madrid; también en centros de investigación científica, como los de Biología Molecular y de Investigaciones Biológicas, ambos del Consejo Superior de Investigaciones Científicas,...
La Maestranza de Caballería y la Academia de Ciencias entregan sus ... - ABC.es
Los dos primeros premios, con una dotación 6.000 euros cada uno, han sido para la doctora Irene Díaz Moreno, por sus investigaciones en el campo de la Biología y el doctor Antonio Rojas León, investigador en el campo de las Matemáticas,...
Penyeta Roja acoge un curso de biología y conservación para ... - Levante
En este sentido, el Instituto Valenciano de Conservación y Restauración de Bienes Culturales de la Generalitat Valenciana ha preparado un curso monográfico bajo el título "La biología como herramienta para el conservador o restaurador"....
El IRB lidera proyecto UE para buscar prefármacos contra diabetes ... - ADN.es
El Instituto de Investigación Biomédica es un centro dedicado a la investigación básica y aplicada donde convergen la biología, la química y la medicina, en el que trabajan 28 grupos estructurados en cinco programas: biología celular y del desarrollo,...
Las enfermedades podrían ser el reflejo codificado de un estrés ... - Tendencias Científicas
Las enfermedades que desarrollan los organismos podrían ser el reflejo codificado de un estrés psíquico personal o heredado de los progenitores, propone una corriente terapéutica conocida como decodificación terapéutica o biología total....
Instituto de Biología de la UNAM resguarda la Colección Nacional ... - Once TV
La Colección de Arácnidos del Instituto de Biología de la UNAM comenzó a conformarse en los años veinte del siglo pasado, y adquirió su carácter de nacional hasta 1994. Integra las 5 mil 100 especies conocidas de arácnidos en el país,...
Miles de jóvenes participan en las jornadas de Diverciencia ... - Sur Digital (Andalucía)
En la cita participa un total de 16 centros educativos algecireños que exponen los trabajos realizados por alumnos de ESO y Bachillerato en distintos ámbitos científicos como la Biología, la Química o la Física. El tema central de Diverciencia este año...
Rarezas del mundo a la vista - Faro de Vigo
Los biólogos o aficionados a la biología tienen la oportunidad de contemplar una selección de curiosos ejemplares de vertebrados e invertebrados, pertenecientes a la Facultad de Biología de Vigo, que pueden visitarse en el Centro Cultural de A Guarda,...
Diario de un biólogo - El Espectador (Colombia)
Luego se obstinó con la idea de continuar su carrera estudiando biología molecular, pero para ese entonces —año 2000— ninguna universidad del país ofrecía esa especialidad. Y se obsesionó con esa idea, explica, porque la biología molecular le...

Biología

Escherichia coli

La biología (del griego «βιος» bios, vida, y «λóγος» logos, razonamiento, estudio, ciencia) es una de las ciencias naturales que tiene como objeto de estudio a los seres vivos y, más específicamente, su origen, su evolución y sus propiedades: génesis, nutrición, morfogénesis, reproducción, patogenia, etc. Se ocupa tanto de la descripción de las características y los comportamientos de los organismos individuales como de las especies en su conjunto, así como de la reproducción de los seres vivos y de las interacciones entre ellos y el entorno. De este modo, trata de estudiar la estructura y la dinámica funcional comunes a todos los seres vivos, con el fin de establecer las leyes generales que rigen la vida orgánica y los principios explicativos fundamentales de ésta.

La palabra «biología» en su sentido moderno parece haber sido introducida independientemente por Gottfried Reinhold Treviranus (Biologie oder Philosophie der lebenden Natur, 1802) y por Jean-Baptiste Lamarck (Hydrogéologie, 1802). Generalmente se dice que el término fue acuñado en 1800 por Karl Friedrich Burdach, aunque se menciona en el título del tercer volumen de Philosophiae naturalis sive physicae dogmaticae: Geologia, biologia, phytologia generalis et dendrologia, de Michael Christoph Hanov y publicado en 1766.

La biología es una disciplina científica que abarca un amplio espectro de campos de estudio que, a menudo, se tratan como disciplinas independientes. Todas ellas juntas, estudian la vida en un amplio rango de escalas. La vida se estudia a escala atómica y molecular en biología molecular, en bioquímica y en genética molecular. Desde el punto de vista celular, se estudia en biología celular, y a escala pluricelular se estudia en fisiología, anatomía e histología. Desde el punto de vista de la ontogenia o desarrollo de los organismos a nivel individual, se estudia en biología del desarrollo.

Cuando se amplía el campo a más de un organismo, la genética trata el funcionamiento de la herencia genética de los padres a su descendencia. La ciencia que trata el comportamiento de los grupos es la etología, esto es, de más de un individuo. La genética de poblaciones observa y analiza una población entera y la genética sistemática trata los linajes entre especies. Las poblaciones interdependientes y sus hábitats se examinan en la ecología y la biología evolutiva. Un nuevo campo de estudio es la astrobiología (o xenobiología), que estudia la posibilidad de la vida más allá de la Tierra.

Las clasificaciones de los seres vivos son muy numerosas. Se proponen desde la tradicional división en dos reinos establecida por Carlos Linneo en el siglo XVII, entre animales y plantas, hasta las actuales propuestas de sistemas cladísticos con tres dominios que comprenden más de 20 reinos.

No obstante, a pesar de la reciente acuñación del término, la biología tiene una larga historia como disciplina.

A diferencia de la física, la biología no suele describir sistemas biológicos en términos de objetos que obedecen leyes inmutables descritas por la matemática. No obstante, se caracteriza por seguir algunos principios y conceptos de gran importancia, entre los que se incluyen la universalidad, la evolución, la diversidad, la continuidad, la homeóstasis y las interacciones.

Hay muchas constantes universales y procesos comunes que son fundamentales para conocer las formas de vida. Por ejemplo, todas las formas de vida están compuestas por células, que están basadas en una bioquímica común, que es la química de los seres vivos. Todos los organismos perpetúan sus caracteres hereditarios mediante el material genético, que está basado en el ácido nucleico ADN, que emplea un código genético universal. En la biología del desarrollo la característica de la universalidad también está presente: por ejemplo, el desarrollo temprano del embrión sigue unos pasos básicos que son muy similares en mucho organismos metazoo.

Uno de los conceptos centrales de la biología es que toda vida desciende de un antepasado común que ha seguido el proceso de la evolución. De hecho, ésta es una de las razones por la que los organismos biológicos exhiben una semejanza tan llamativa en las unidades y procesos que se han discutido en la sección anterior. Charles Darwin conceptualizó y publicó la teoría de la evolución en la cual uno de los principios es la selección natural (a Alfred Russell Wallace se le suele reconocer como codescubridor de este concepto). Con la llamada síntesis moderna de la teoría evolutiva, la deriva genética fue aceptada como otro mecanismo fundamental implicado en el proceso.

Sabemos que el DNA, sustancia fundamental del material cromático difuso (así se observa en la célula de reposo),está organizado estructural y funcionalmente junto a ciertas proteìnas y ciertos costituyentes en formas de estructuras abastonadas llamadas cromosomas.Las unidades de DNA son las responsables de las características estructurales y metabólicas de la célula y de la transmisión de estos caracteres de una célula a otra.Estas recibèn el nombre de genes y están arregladas en un orden lineal a lo largo de los cromosomas.

El gen es la unidad básica de material hereditario, y físicamente está formado por un segmento del ADN del cromosoma. Atendiendo al aspecto que afecta a la herencia, esa unidad básica recibe también otros nombres, como recón, cuando lo que se completa es la capacidad de recombianción (el recón será el segmento de ADN más pequeño con capacidad de recombinarse), y mutón, cuando se atiende a las mutaciones (y, así, el mutón será el segmento de ADN más pequeño con capacidad de mutarse).

En términos generales, un gen es un fragmento de ADN que codidifica una proteína o un péptido.

Se llama filogenia al estudio de la historia evolutiva y las relaciones genealógicas de las estirpes. Las comparaciones de secuencias de ADN y de proteínas, facilitadas por el desarrollo técnico de la biología molecular y de la genómica, junto con el estudio comparativo de fósiles u otros restos paleontológicos, generan la información precisa para el análisis filogenético. El esfuerzo de los biólogos por abordar científicamente la comprensión y la clasificación de la diversidad de la vida ha dado lugar al desarrollo de diversas escuelas en competencia, como la fenética, que puede considerarse superada, o la cladística. No se discute que el desarrollo muy reciente de la capacidad de descifrar sobre bases sólidas la filogenia de las especies está catalizando una nueva fase de gran productividad en el desarrollo de la biología.

A pesar de la unidad subyacente, la vida exhibe una asombrosa diversidad en morfología, comportamiento y ciclos vitales. Para afrontar esta diversidad, los biólogos intentan clasificar todas las formas de vida. Esta clasificación científica refleja los árboles evolutivos (árboles filogenéticos) de los diferentes organismos. Dichas clasificaciones son competencia de las disciplinas de la sistemática y la taxonomía. La taxonomía sitúa a los organismos en grupos llamados taxa, mientras que la sistemática trata de encontrar sus relaciones.

El reciente descubrimiento de una nueva clase de virus, denominado mimivirus, ha causado que se proponga la existencia de un cuarto dominio debido a sus características particulares, en el que por ahora sólo estaría incluido ese organismo.

Se dice que un grupo de organismos tiene un antepasado común si tiene un ancestro común. Todos los organismos existentes en la Tierra descienden de un ancestro común o, en su caso, de un fondo genético ancestral. Este último ancestro común universal, esto es, el ancestro común más reciente de todos los organismos que existen ahora, se cree que apareció hace alrededor de 3.500 millones de años (véase origen de la vida).

La noción de que "toda vida proviene de un huevo" (del latín "Omne vivum ex ovo") es un concepto fundacional de la biología moderna, y viene a decir que siempre ha existido una continuidad de la vida desde su origen inicial hasta la actualidad. En el siglo XIX se pensaba que las formas de vida podían aparecer de forma espontánea bajo ciertas condiciones (véase abiogénesis). Los biólogos consideran que la universalidad del código genético es una prueba definitiva a favor de la teoría del descendiente común universal (DCU) de todas las bacterias, archaea y eucariotas.

La homeostasis es la propiedad de un sistema abierto de regular su medio interno para mantener unas condiciones estables, mediante múltiples ajustes de equilibrio dinámico controlados por mecanismos de regulación interrelacionados. Todos los organismos vivos, sean unicelulares o pluricelulares tienen su propia homeostasis. Por poner unos ejemplos, la homeostasis se manifiesta celularmente cuando se mantiene una acidez interna estable (pH); a nivel de organismo, cuando los animales de sangre caliente mantienen una temperatura corporal interna constante; y a nivel de ecosistema, al consumir dióxido de carbono las plantas regulan la concentración de esta molécula en la atmósfera. Los tejidos y los órganos también pueden mantener su propia homeostasis.

Todos los seres vivos interactúan con otros organismos y con su entorno. Una de las razones por las que los sistemas biológicos pueden ser difíciles de estudiar es que hay demasiadas interacciones posibles. La respuesta de una bacteria microscópica a la concentración de azúcar en su medio (en su entorno) es tan compleja como la de un león buscando comida en la sabana africana. El comportamiento de una especie en particular puede ser cooperativo o agresivo; parasitario o simbiótico. Los estudios se vuelven mucho más complejos cuando dos o más especies diferentes interactúan en un mismo ecosistema; el estudio de estas interacciones es competencia de la ecología.

La biología se ha convertido en una iniciativa investigadora tan vasta que generalmente no se estudia como una única disciplina, sino como un conjunto de subdisciplinas. Aquí se considerarán cuatro amplios grupos.

Sin embargo, es importante señalar que estos límites, agrupaciones y descripciones son una descripción simplificada de la investigación biológica. En realidad los límites entre disciplinas son muy inseguros y, frecuentemente, muchas disciplinas se prestan técnicas las unas a las otras. Por ejemplo, la biología de la evolución se apoya en gran medida de técnicas de la biología molecular para determinar las secuencias de ADN que ayudan a comprender la variación genética de una población; y la fisiología toma préstamos abundantes de la biología celular para describir la función de sistemas orgánicos.

La biología molecular es el estudio de la biología a nivel molecular. El campo se solapa con otras áreas de la biología, en particular con la genética y la bioquímica. La biología molecular trata principalmente de comprender las interacciones entre varios sistemas de una célula, incluyendo la interrelación de la síntesis de proteínas de ADN y ARN y del aprendizaje de cómo se regulan estas interacciones.

La biología celular estudia las propiedades fisiológicas de las células, así como sus comportamientos, interacciones y entorno; esto se hace tanto a nivel microscópico como molecular. La biología celular investiga los organismos unicelulares como bacterias y células especializadas de organismos pluricelulares como los humanos.

La comprensión de la composición de las células y de cómo funcionan éstas es fundamental para todas las ciencias biológicas. La apreciación de las semejanzas y diferencias entre tipos de células es particularmente importante para los campos de la biología molecular y celular. Estas semejanzas y diferencias fundamentales permiten unificar los principios aprendidos del estudio de un tipo de célula, que se puede extrapolar y generalizar a otros tipos de células.

La genética es la ciencia de los genes, la herencia y la variación de los organismos. En la investigación moderna, la genética proporciona importantes herramientas de investigación de la función de un gen particular, esto es, el análisis de interacciones genéticas. Dentro de los organismos, generalmente la información genética se encuentra en los cromosomas, y está representada en la estructura química de moléculas de ADN particulares.

Los genes codifican la información necesaria para sintetizar proteínas, que a su vez, juegan un gran papel influyendo (aunque, en muchos casos, no lo determinan completamente) el fenotipo final del organismo.

La biología del desarrollo estudia el proceso por el que los organismos crecen y se desarrollan. Con origen en la embriología, la biología del desarrollo actual estudia el control genético del crecimiento celular, la diferenciación celular y la morfogénesis, que es el proceso por el que se llega a la formación de los tejidos, de los órganos y de la anatomía.

Los organismos modelo de la biología del desarrollo incluyen el gusano redondo Caenorhabditis elegans, la mosca de la fruta Drosophila melanogaster, el pez cebra Brachydanio rerio, el ratón Mus musculus y la hierba Arabidopsis thaliana.

La fisiología estudia los procesos mecánicos, físicos y bioquímicos de los organismos vivos, e intenta comprender cómo funcionan todas las estructuras como una unidad. El funcionamiento de las estructuras es un problema capital en biología.

Tradicionalmente se han dividido los estudios fisiológicos en fisiología vegetal y animal, aunque los principios de la fisiología son universales, no importa qué organismo particular se está estudiando. Por ejemplo, lo que se aprende de la fisiología de una célula de levadura puede aplicarse también a células humanas.

El campo de la fisiología animal extiende las herramientas y los métodos de la fisiología humana a las especies animales no humanas. La fisiología vegetal también toma prestadas técnicas de los dos campos.

La anatomía es una parte importante de la fisiología y considera cómo funcionan e interactúan los sistemas orgánicos de los animales como el sistema nervioso, el sistema inmunológico, el sistema endocrino, el sistema respiratorio y el sistema circulatorio. El estudio de estos sistemas se comparte con disciplinas orientadas a la medicina, como la neurología, la inmunología y otras semejantes. La anatomía comparada estudia los cambios morfofisiológicos que han ido experimentando las especies a lo largo de su historia evolutiva, valiéndose para ello de las homologías existentes en las especies actuales y el estudio de restos fósiles.

Por otra parte, más allá del nivel de organización organísmico, la ecofisiología estudia los procesos fisiológicos que tienen lugar en las interacciones entre organismos, a nivel de comunidades y ecosistemas, así como de las interrelaciones entre los sistemas vivos y los inertes (como por ejemplo el estudio de los ciclos biogeoquímicos o los intercambios biosfera-atmósfera).

La biología de la evolución trata el origen y la descendencia de las especies, así como su cambio a lo largo del tiempo, esto es, su evolución. Es un campo global porque incluye científicos de diversas disciplinas tradicionalmente orientadas a la taxonomía. Por ejemplo, generalmente incluye científicos que tienen una formación especializada en organismos particulares, como la teriología, la ornitología o la herpetología, aunque usan estos organismos como sistemas para responder preguntas generales de la evolución. Esto también incluye a los paleontólogos que a partir de los fósiles responden preguntas acerca del modo y el tempo de la evolución, así como teóricos de áreas tales como la genética de poblaciones y la teoría de la evolución. En los años 90 la biología del desarrollo hizo una reentrada en la biología de la evolución desde su exclusión inicial de la síntesis moderna a través del estudio de la biología evolutiva del desarrollo. Algunos campos relacionados que a menudo se han considerado parte de la biología de la evolución son la filogenia, la sistemática y la taxonomía.

Las dos disciplinas tradicionales orientadas a la taxonomía más importantes son la botánica y la zoología. La botánica es el estudio científico de las plantas. La botánica cubre un amplio rango de disciplinas científicas que estudian el crecimiento, la reproducción, el metabolismo, el desarrollo, las enfermedades y la evolución de la vida de la planta.

La zoología es la disciplina que trata el estudio de los animales, incluyendo la fisiología, la anatomía y la embriología. La genética común y los mecanismos de desarrollo de los animales y las plantas se estudia en la biología molecular, la genética molecular y la biología del desarrollo. La ecología de los animales está cubierta con la ecología del comportamiento y otros campos.

El sistema de clasificación dominante se llama taxonomía de Linneo, e incluye rangos y nomenclatura binomial. El modo en que los organismos reciben su nombre está gobernado por acuerdos internacionales, como el Código Internacional de Nomenclatura Botánica (CINB o ICBN en inglés), el Código Internacional de Nomenclatura Zoológica (CINZ o ICZN en inglés) y el Código Internacional de Nomenclatura Bacteriana (CINB o ICNB en inglés). En 1997 se publicó un cuarto borrador del biocódigo (BioCode) en un intento de estandarizar la nomenclatura en las tres áreas, pero no parece haber sido adoptado formalmente. El Código Internacional de Clasificación y Nomenclatura de Virus (CICNV o ICVCN en inglés) permanece fuera del BioCode..

La ecología estudia la distribución y la abundancia de organismos vivos y las interacciones de estos organismos con su entorno. El entorno de un organismo incluye tanto su hábitat, que se puede describir como la suma de factores abióticos locales como el clima y la geología, así como con los otros organismos con los que comparten ese hábitat. Las interacciones entre organismos pueden ser inter- o intraespecíficas, y estas relaciones se pueden clasificar según si para cada uno de los agentes en interacción resulta beneficiosa, perjudicial o neutra.

Uno de los pilares fundamentales de la ecología es estudiar el flujo de energía que se propaga a través de la red trófica, desde los productores primarios hasta los consumidores y detritívoros, perdiendo calidad dicha energía en el proceso al disiparse en forma de calor. El principal aporte de energía a los ecosistemas es la energía proveniente del sol, pero las plantas (en ecosistemas terrestres, o las algas en los acuáticos) tienen una eficiencia fotosintética limitada, al igual que los herbívoros y los carnívoros tienen una eficacia heterotrófica. Ésta es la razón por la que un ecosistema siempre podrá mantener un mayor número y cantidad de herbívoros que de carnívoros, y es por lo que se conoce a las redes tróficas también como "pirámides", y es por esto que los ecosistemas tienen una capacidad de carga limitada (y la misma razón por la que se necesita mucho más territorio para producir carne que vegetales).

Los sistemas ecológicos se estudian a diferentes niveles, desde individuales y poblacionales (aunque en cierto modo puede hablarse de una "ecología de los genes", infraorganísmica), hasta los ecosistemas completos y la biosfera, existiendo algunas hipótesis que postulan que esta última podría considerarse en cierto modo un "supraorganismo" con capacidad de homeostasis. La ecología es una ciencia multidisciplinar y hace uso de muchas otras ramas de la ciencia, al mismo tiempo que permite aplicar algunos de sus análisis a otras disciplinas: en teoría de la comunicación se habla de Ecología de la información, y en marketing se estudian los nichos de mercado. Existe incluso una rama del pensamiento económico que sostiene que la economía es un sistema abierto que debe ser considerado como parte integrante del sistema ecológico global.

La etología, por otra parte, estudia el comportamiento animal (en particular de animales sociales como los insectos sociales, los cánidos o los primates), y a veces se considera una rama de la zoología. Los etólogos se han ocupado, a la luz de los procesos evolutivos, del comportamiento y la comprensión del comportamiento según la teoría de la selección natural. En cierto sentido, el primer etólogo moderno fue Charles Darwin, cuyo libro La expresión de las emociones en los animales y hombres influyó a muchos etólogos posteriores al sugerir que ciertos rasgos del comportamiento podrían estar sujetos a la misma presión selectiva que otros rasgos meramente físicos.

El especialista en hormigas E. O. Wilson despertó una aguda polémica en tiempos más recientes con su libro de 1980 Sociobiología: La Nueva Síntesis, al pretender que la sociobiología debería ser una disciplina matriz, que partiendo de la metodología desarrollada por los etólogos, englobase tanto a la psicología como a la antropología o la sociología y en general a todas las ciencias sociales, ya que en su visión la naturaleza humana es esencialmente animal. Este enfoque ha sido criticado por autores como el genético R.C.Lewontin por exhibir un reduccionismo que en última instancia justifica y legitima las diferencias instituidas socialmente.

La etología moderna comprende disciplinas como la neuroetología, inspiradas en la cibernética y con aplicaciones industriales en el campo de la robótica y la neuropsiquiatría. También toma prestados muchos desarrollos de la teoría de juegos, especialmente en dinámicas evolutivas, y algunos de sus conceptos más populares son el de gen egoísta, creado por Richard Dawkins o el de Meme.

Al principio



Biología molecular

La Biología Molecular es el estudio de la vida a un nivel molecular. Esta área esta relacionada con otros campos de la Biología y la Química, particularmente Genética y Bioquímica. La biología molecular concierne principalmente al entendimiento de las interacciones de los diferentes sistemas de la célula, lo que incluye muchísimas relaciones, entre ellas las del ADN con el ARN, la síntesis de proteínas, el metabolismo, y el cómo todas esas interacciones son reguladas para conseguir un afinado funcionamiento de la célula.

Al estudiar el comportamiento biológico de las moléculas que componen las células vivas, la Biología molecular roza otras ciencias que abordan temas similares: así, p. ej., juntamente con la Genética se interesa por la estructura y funcionamiento de los genes y por la regulación (inducción y represión) de la síntesis intracelular de enzimas (v.) y de otras proteínas. Con la Citología, se ocupa de la estructura de los corpúsculos subcelulares (núcleo, nucléolo, mitocondrias, ribosomas, lisosomas, etc.) y sus funciones dentro de la célula. Con la Bioquímica estudia la composición y cinética de las enzimas, interesándose por los tipos de catálisis enzimática, activaciones, inhibiciones competitivas o alostéricas, etc. También colabora con la Filogenética al estudiar la composición detallada de determinadas moléculas en las distintas especies de seres vivos, aportando valiosos datos para el conocimiento de la evolución.

Sin embargo, difiere de todas estas ciencias enumeradas tanto en los objetivos concretos como en los métodos utilizados para lograrlos. Así como la Bioquímica investiga detalladamente los ciclos metabólicos y la integración y desintegración de las moléculas que componen los seres vivos, la Biología molecular pretende fijarse con preferencia en el comportamiento biológico de las macromoléculas (ADN, ARN, enzimas, hormonas, etc.) dentro de la célula y explicar las funciones biológicas del ser vivo por estas propiedades a nivel molecular.

Los métodos que emplea esta nueva ciencia son fundamentalmente los mismos que la Biofísica, Bioquímica, y Biología. Utiliza los análisis químicos, cualitativo y cuantitativo, los conocimientos de la Química orgánica, la Biología de microorganismos y de virus, etc., pero revisten especial importancia los nuevos métodos microanalíticos tanto físicos como químicos. Merecen destacarse la Microscopía electrónica, que permite resoluciones que alcanzan los 10 Amstrongs; la difracción de rayos X, que determina la estructura y disposición espacial de los átomos de las macromoléculas; la ultracentrifugación diferencial, tanto analítica como preparativa, que permite separaciones antes imposibles; la Cromatografía de gases, y, en fase líquida, la Espectrografía de infrarrojos, la Química con isótopos trazadores, la Espectroscopía de masas, etc.

Al profundizar en cualquier fenómeno biológico y pretender explicar la naturaleza íntima de los procesos que determinan una propiedad o una función de los seres vivos, entramos inevitablemente en el campo de la Biología molecular. Veamos, p. ej., el estudio de los genes. Las clásicas leyes de Mendel tienen su explicación inmediata en el conocimiento morfológico y funcional de los cromosomas. Pero cuando deseamos saber la composición y forma de actuación de un gen necesitamos penetrar a fondo en la estructura del ADN doble helicoide de Watson y Crick, el ordenamiento de bases púricas y pirimidímicas, es decir, la información genética.

Pero hay más; la proteína, una vez sintetizada, debe ordenarse en el espacio según determinadas reglas que constituyen la conformación espacial específica (estructuras secundaria y terciaria) y a veces asociarse varias moléculas iguales o diferentes para constituir lo que se ha llamado estructuras cuaternaria y quinaria, de modo que las propiedades biológicas de la molécula como enzima están vinculadas a esta ordenación espacial compleja. La molécula proteica así organizada puede resultar ser una enzima que, en su actividad catalítica, es susceptible de sufrir activaciones o inhibiciones por determinadas sustancias, acciones éstas de trascendental importancia para la vida de la célula. Del mismo modo, la Biología molecular se interesa por la estructura química de las sustancias que componen las membranas biológicas y la ordenación de las enzimas que realizan acciones encadenadas, p. ej., dentro de las mitocondrias, núcleo y otros corpúsculos subcelulares, para explicar la mecánica de los ciclos y procesos bioquímicos determinados por la Topoquímica celular.

Los procesos de reproducción de los virus, de las bacterias, y de los organismos superiores encierran multitud de incógnitas que trata de ir resolviendo la Biología molecular. Las mutaciones producidas por agentes físicos (rayos X, rayos gamma, calor, etc.) o químicos (sustancias mutágenas) tienen una explicación tanto más satisfactoria cuanto mejor se conoce la base molecular de los procesos de alteración en la estructura y ordenación de las bases nitrogenadas del ADN.

El parentesco entre especies diferentes de seres vivos puede establecerse mediante el estudio individual comparado de las sustancias macromoleculares (proteínas) elaboradas por ellos. Así, de la secuencia de aminoácidos en la hemoglobina, mioglobina, citocromos, hormonas hipofisarias o insulina se induce el grado de proximidad filogenética, al demostrarse la evolución de la proteína por mutaciones progresivas. Multitud de fenómenos genéticos como selección natural, adaptación al ambiente, diferenciación de las especies, etc., tienen su última explicación a nivel molecular. Por último, la Biología molecular de microorganismos está aportando datos interesantes para la búsqueda de nuevos antibióticos y antimetabolitos, que permiten atacar eficaz y selectivamente a los gérmenes patógenos.

Con todo esto no queremos afirmar que la Biología molecular sea una ciencia completa ni perfectamente elaborada. Todo lo contrario; los nuevos descubrimientos, al resolver una incógnita plantean muchos más interrogantes que son objeto de investigaciones futuras. Hoy día esta joven ciencia está en expansión explosiva. Por otro lado, la última y definitiva explicación de los comportamientos de las moléculas de los seres vivos requiere, para ser conocida en profundidad, enfrentarse con otras ramas de la ciencia tales como la Biofísica submolecular (orbitales, fuerzas de enlace, hibridación, etc.) e incluso la Física subatómica, para la cual se requiere un bagaje de conocimientos que jamás puede ser patrimonio de investigadores aislados, sino de equipos de trabajo científicamente heterogéneos, pero armónicamente conjuntados.

Al principio



Órgano (biología)

En biología, un órgano (del latín órganum: ‘instrumento, herramienta’) es un conjunto asociado de tejidos que concurren en estructura y función. Los órganos representan el nivel de organización biológica superior al tejidos e inferior al sistema.

En biología celular, un orgánulo u organela (diminutivo de órgano) es una estructura sub-celular análoga a los órganos de seres vivos pluricelulares.

Ejemplos de órganos son: corazón, hígado, ojo, piel, etc.

Desde el punto de vista anatómico, los diferentes órganos que concurren en una función mayor se agrupan en sistemas (como circulatorio, respiratorio, reproductor, etc.). Los sistemas, como conjuntos orgánicos sinérgicos, a su vez se agrupan en aparatos para satisfacer funciones aún más complejas (como el aparato locomotor).

Los diferentes tejidos que componen un órgano constituyen su morfología (histoarquitectura) y aportan funcionalidad (histofisiología). La estroma es la fracción orgánica que se corresponde con los elementos estructurales, y el parénquima es la fracción fisiológica del órgano.

Una víscera es un órgano contenido en una cavidad esplácnica, como la torácica, la abdominal y la pélvica. A las vísceras también se les llama entrañas. La parte de la anatomía que estudia las vísceras es la esplacnología.

Al principio



Huésped (biología)

En Biología se llama huésped, hospedador u hospedante a aquel organismo que alberga a otro en su interior o lo porta sobre sí, ya sea un parásito, un comensal o un mutualista.

Este uso del término va a la contra del que tiene en el lenguaje cotidiano, donde significa hospedado, no hospedador. La palabra huésped procede del latín hospes (genitivo hospitis) que ya representaba entonces la misma pareja de significados contradictorios: el que alberga y el que es albergado. Por la ambigüedad del término hay quien prefiere el término hospedador (del latín hospitator) o el término hospedante, cuyo uso está sin embargo menos extendido, sobre todo en los textos profesionales.

Hablando de parásitos, se llama huésped primario a aquél donde desarrolla la mayor parte de su existencia y, sobre todo, su crecimiento. Se llama huésped secundario al que alberga al parásito sólo en una fase inicial de su crecimiento, casi siempre en relación con su dispersión y para facilitar su ingreso en el huésped primario. Por ejemplo, los nemátodos del género Anisakis, que producen anisakiasis en humanos, lo hacen porque sus huéspedes primarios naturales son mamíferos marinos, de fisiología parecida a la humana, mientras que los huéspedes secundarios son, en momentos sucesivos de su desarrollo pequeños crustáceos inicialmente y luego peces, cuando se comen a los primeros. La infestación de cetáceos o de los seres humanos se produce cuando devoran a los peces. Otro ejemplo es el de las especies de Plasmodium que infectan a los seres humanos, protistas apicomplejos que producen la malaria, caso en el que el huésped secundario es un mosquito del género Anopheles, el cual actúa como vector de la enfermedad.

Un huésped reservorio es el que alberga, en tanto que huésped primario, a un agente infeccioso o parásito que puede invadir ocasionalmente también el organismo humano o el de una especie de interés económico. El salto desde el origen de zoonosis, enfermedades procedentes de animales, y ocasionalmente de enfermedades infecciosas emergentes, cuando el agente o parásito adquiere la habilidad de pasar directamente de unos seres humanos a otros. Sabemos hoy que los reservorios de los que proceden las epidemias humanas iniciales de gripe son aves, o que las dos formas del VIH, que producen el SIDA, saltaron a la especie humana desde monos africanos.

Al principio



Source : Wikipedia