Astronomía

3.4124245038694 (1159)
Publicado por tornado 02/04/2009 @ 05:15

Tags : astronomía, ciencia, astronomia, podcast

últimas noticias
Una exposición recuerda la afición de Serra Orvay por la astronomía - Última Hora Ibiza
La muestra, que será presentada en las Escoles velles de Sant Josep a partir del 12 de junio, ha sido organizada conjuntamente por los consistorios de Vila y de Sant Josep para recordar la afición por la astronomía del sacerdote y lingüista josepí,...
El centro astronómico acercará al pueblo el observatorio de Calar Alto - El Almería
Ese será el objetivo principal del centro de interpretación astronómica de Bacares, que se unirá al centro de Gérgal, que se presentó el mes de marzo. Ambos centros servirán para impulsar la astronomía y difundirla por toda la comarca....
Herschel y Plank, al encuentro del ´Big Bang´ - Levante
Las dos misiones se enmarcan entre las más ambiciosas jamás desarrolladas en Europa y marcan el cruce de nuevas fronteras en el campo de la astronomía basada en telescopios espaciales. Ambos satélites enviaron sus primeras señales de radio a la Tierra...
Mincit abre conmemoraciones del Año de la Astronomía - AngolaPress
Luanda – El Ministerio de la Ciencia y Tecnología (MINCIT) procederá, el martes, día 19, en Luanda, la apertura de las conmemoraciones del Año Internacional de la Astronomía, estatuído por la Organización de las Naciones Unidas (ONU) en su 62ª Asamblea...
El Museo Elder de la Ciencia y la Tecnología inaugura en Lanzarote ... - Canarias 7
Coincidiendo con la celebración del Año Internacional de la Astronomía, la programación del septenio para 2009 se centra en este tema como eje central de todas sus actividades. Desde el centro adscrito a la Consejería de Turismo del Gobierno de...
CONFERENCIAS SOBRE ASTRONOMÍA POR MUJERES INVESTIGADORAS - Universitat d'Alacant
La Universidad de Alicante inicia mañana viernes un ciclo de conferencias sobre astronomía impartida por mujeres investigadoras en esta ciencia. El programa se compone de tres conferencias que se ofrecerán en la sede de Alicante de la UA y se enmarcan...
Inauguran primera feria de astronomía en Calama - El Mercurio de Calama
15.20- Desde hoy hasta el domingo los calameños podrán conocer más sobre el universo, porque se inauguró la Primera Feria Internacional de Astronomía denominada “Calama Capital Astronómica”, que se estará presentando en el estadio Techado de la ciudad....
DULCE ASTRONOMÍA. - Diario Digital de Alcorcón
La elección de la astronomía como tema coincide con la elección del año 2009 como el Año Internacional de la Astronomía. En este sentido, el Museo del Chocolate de Barcelona acoge una nueva exposición temporal, "Los Mundos Celestes - 400 años del...
El Año de la Astronomía lucha contra los alienígenas y los horóscopos - TeleCinco
Resulta paradójico que en el Año Internacional de la Astronomía y con hazañas científicas como el Gran Telescopio Canarias cada vez tengan mayor difusión los horóscopos, la creencia en que los alienígenas hicieron las pirámides y los moais de Pascua o...
Google y la Astronomía - Universia.es
Primero fue el buscador, luego el correo y las múltiples aplicaciones que le siguieron, pero es que Google también tiene herramientas para los amantes de la Astronomía. Google Mars, Google Sky y la ya casi a punto Star Droid ponen al alcance de todos...

Astronomía

El Hubble: telescopio ubicado fuera de la atmósfera que observa objetos celestes. Sus maravillosas imágenes han asombrado al mundo, descubierto estrellas y planteado hipótesis. Es el icono de la astronomía moderna.

La astronomía (del griego: αστρονομία = άστρον + νόμος, etimológicamente la "Ley de las estrellas") es la ciencia que se ocupa del estudio de los cuerpos celestes, sus movimientos, los fenómenos ligados a ellos, su registro y la investigación de su origen a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tolomeo, Copérnico, Brahe, Kepler, Galileo, Newton, Kirchhoff y Einstein han sido algunos de sus cultivadores.

La astronomía es una de las pocas ciencias en las que los astrónomos aficionados aún pueden jugar un papel activo, especialmente en el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc. No debe confundirse la astronomía con la astrología. Aunque ambos campos comparten un origen común, son muy diferentes; los astrónomos siguen el método científico, mientras que los astrólogos se ocupan de la supuesta influencia de los astros en la vida de los hombres. La astrología es una pseudociencia que no tiene en cuenta la precesión de los equinoccios, un descubrimiento que se remonta a Hiparco.

En casi todas las religiones antiguas existía la cosmogonía, que intentaba explicar el origen del universo, ligando éste a los elementos mitológicos. La historia de la astronomía es tan antigua como la historia del ser humano. Antiguamente se ocupaba, únicamente, de la observación y predicciones de los movimientos de los objetos visibles a simple vista, quedando separada durante mucho tiempo de la Física. En Sajonia-Anhalt, Alemania, se encuentra el famoso Disco celeste de Nebra, que es la representación más antigua conocida de la bóveda celeste. Quizá fueron los astrónomos chinos quienes dividieron, por primera vez, el cielo en constelaciones. En Europa, las doce constelaciones que marcan el movimiento anual del Sol fueron denominadas constelaciones zodiacales. Los antiguos griegos hicieron importantes contribuciones a la astronomía, entre ellas, la definición de magnitud. La astronomía precolombina poseía calendarios muy exactos y parece ser que las pirámides de Egipto fueron construidas sobre patrones astronómicos muy precisos.

La cultura griega clásica primigenia postulaba que la Tierra era plana. En el modelo aristotélico lo celestial pertenecía a la perfección -"cuerpos celestes perfectamente esféricos moviéndose en órbitas circulares perfectas"-, mientras que lo terrestre era imperfecto; estos dos reinos se consideraban como opuestos. Aristóteles defendía la teoría geocéntrica para desarrollar sus postulados. Fue probablemente Eratóstenes quien diseñara la esfera armilar que es un astrolabio para mostrar el movimiento aparente de las estrellas alrededor de la tierra.

La astronomía observacional estuvo casi totalmente estancada en Europa durante la Edad Media, a excepción de algunas aportaciones como la de Alfonso X el Sabio con sus tablas alfonsíes, o los tratados de Alcabitius, pero floreció en el mundo con el Imperio Persa y la cultura árabe. Al final del siglo X, un gran observatorio fue construido cerca de Teherán (Irán), por el astrónomo persa Al-Khujandi, quien observó una serie de pasos meridianos del Sol, lo que le permitió calcular la oblicuidad de la eclíptica. También en Persia, Omar Khayyam elaboró la reforma del calendario que es más preciso que el calendario juliano acercándose al Calendario Gregoriano. A finales del siglo IX, el astrónomo persa Al-Farghani escribió ampliamente acerca del movimiento de los cuerpos celestes. Su trabajo fue traducido al latín en el siglo XII. Abraham Zacuto fue el responsable en el siglo XV de adaptar las teorías astronómicas conocidas hasta el momento para aplicarlas a la navegación de la marina portuguesa. Ésta aplicación permitió a Portugal ser la puntera en el mundo de los descubrimientos de nuevas tierras fuera de Europa.

Durante siglos, la visión geocéntrica de que el Sol y otros planetas giraban alrededor de la Tierra no se cuestionó. Esta visión era lo que para nuestros sentidos se observaba. En el Renacimiento, Nicolás Copérnico propuso el modelo heliocéntrico del Sistema Solar. Su trabajo De Revolutionibus Orbium Coelestium fue defendido, divulgado y corregido por Galileo Galilei y Johannes Kepler, autor de Harmonices Mundi, en el cual se desarrolla por primera vez la tercera ley del movimiento planetario.

Galileo añadió la novedad del uso del telescopio para mejorar sus observaciones. La disponibilidad de datos observacionales precisos llevó a indagar en teorías que explicasen el comportamiento observado (véase su obra Sidereus Nuncius). Al principio sólo se obtuvieron reglas ad-hoc, cómo las leyes del movimiento planetario de Kepler, descubiertas a principios del siglo XVII. Fue Isaac Newton quien extendió hacia los cuerpos celestes las teorías de la gravedad terrestre y conformando la Ley de la gravitación universal, inventando así la mecánica celeste, con lo que explicó el movimiento de los planetas y consiguiendo unir el vacío entre las leyes de Kepler y la dinámica de Galileo. Esto también supuso la primera unificación de la astronomía y la física (véase Astrofísica).

Tras la publicación de los Principios Matemáticos de Isaac Newton (que también desarrolló el telescopio reflector), se transformó la navegación marítima. A partir de 1670 aproximadamente, utilizando instrumentos modernos de latitud y los mejores relojes disponibles se ubicó cada lugar de la Tierra en un planisferio o mapa, calculando para ello su latitud y su longitud. La determinación de la latitud fue fácil pero la determinación de la longitud fue mucho más delicada. Los requerimientos de la navegación supusieron un empuje para el desarrollo progresivo de observaciones astronómicas e instrumentos más precisos, constituyendo una base de datos creciente para los científicos.

A finales del siglo XIX se descubrió que, al descomponer la luz del Sol, se podían observar multitud de líneas de espectro (regiones en las que había poca o ninguna luz). Experimentos con gases calientes mostraron que las mismas líneas podían ser observadas en el espectro de los gases, líneas específicas correspondientes a diferentes elementos químicos. De esta manera se demostró que los elementos químicos en el Sol (mayoritariamente hidrógeno) podían encontrarse igualmente en la Tierra. De hecho, el helio fue descubierto primero en el espectro del Sol y sólo más tarde se encontró en la Tierra, de ahí su nombre.

Se descubrió que las estrellas eran objetos muy lejanos y con el espectroscopio se demostró que eran similares al Sol, pero con una amplia gama de temperaturas, masas y tamaños. La existencia de la Vía Láctea como un grupo separado de estrellas no se demostró sino hasta el siglo XX, junto con la existencia de galaxias externas y, poco después, la expansión del universo, observada en el efecto del corrimiento al rojo. La astronomía moderna también ha descubierto una variedad de objetos exóticos como los quásares, púlsares, radiogalaxias, agujeros negros, estrellas de neutrones, y ha utilizado estas observaciones para desarrollar teorías físicas que describen estos objetos. La cosmología hizo grandes avances durante el siglo XX, con el modelo del Big Bang fuertemente apoyado por la evidencia proporcionada por la astronomía y la física, como la radiación de fondo de microondas, la Ley de Hubble y la abundancia cosmológica de los elementos químicos.

Durante el siglo XX, la espectrometría avanzó, en particular como resultado del nacimiento de la física cuántica, necesaria para comprender las observaciones astronómicas y experimentales.

Para ubicarse en el cielo, se agruparon las estrellas que se ven desde la Tierra en constelaciones. Así, continuamente se desarrollan mapas (cilíndricos o cenitales) con su propia nomenclatura astronómica para localizar las estrellas conocidas y agregar los últimos descubrimientos.

La astronomía de posición es la rama más antigua de esta ciencia. Describe el movimiento de los astros, planetas, satélites y fenómenos como los eclipses y tránsitos de los planetas por el disco del Sol. Para estudiar el movimiento de los planetas se introduce el movimiento medio diario que es lo que avanzaría en la órbita cada día suponiendo movimiento uniforme. La astronomía de posición también estudia el movimiento diurno y el movimiento anual del Sol. Son tareas fundamentales de la misma la determinación de la hora y para la navegación el cálculo de las coordenadas geográficas. Para la determinación del tiempo se usa el tiempo de efemérides ó también el tiempo solar medio que está relacionado con el tiempo local. El tiempo local en Greenwich se conoce como Tiempo Universal.

La distancia a la que están los astros de la Tierra en el de universo se mide en unidades astronómicas, años luz o pársecs. Conociendo el movimiento propio de las estrellas, es decir lo que se mueve cada siglo sobre la bóveda celeste se puede predecir la situación aproximada de las estrellas en el futuro y calcular su ubicación en el pasado viendo como evolucionan con el tiempo la forma de las constelaciones.

Para observar la bóveda celeste y las constelaciones más conocidas no hará falta ningún instrumento, para observar cometas o algunas nebulosas sólo serán necesarios unos prismáticos, los grandes planetas se ven a simple vista; pero para observar detalles de los discos de los planetas del sistema solar o sus satélites mayores bastará con un telescopio simple. Si se quiere observar con profundidad y exactitud determinadas características de los astros, se necesitan instrumentos que necesitan de la precisión y tecnología de los últimos avances científicos.

El telescopio fue el primer instrumento de observación del cielo. Aunque su invención se le atribuye a Hans Lippershey, el primero en utilizar este invento para la astronomía fue Galileo Galilei quien decidió construirse él mismo uno. Desde aquel momento, los avances en este instrumento han sido muy grandes como mejores lentes y sistemas avanzados de posicionamiento.

Actualmente, el telescopio más grande del mundo se llama Very Large Telescope y se encuentra en el observatorio Paranal, al norte de Chile. Consiste en cuatro telescopios ópticos reflectores que se conjugan para realizar observaciones de gran resolución.

Se han aplicado diversos conocimientos de la física, las matemáticas y de la química a la astronomía. Estos avances han permitido observar las estrellas con muy diversos métodos. La información es recibida principalmente de la detección y el análisis de la radiación electromagnética (luz, infrarrojos, ondas de radio), pero también se puede obtener información de los rayos cósmicos, neutrinos y meteoros.

Estos datos ofrecen información muy importante sobre los astros, su composición química, temperatura, velocidad en el espacio, movimiento propio, distancia desde la Tierra y pueden plantear hipótesis sobre su formación, desarrollo estelar y fin.

La radioastronomía se basa en la observación por medio de los radiotelescopios, unos instrumentos con forma de antena que recogen y registran las ondas de radio o radiación electromagnética emitidas por los distintos objetos celestes.

Estas ondas de radio, al ser procesadas ofrecen un espectro analizable del objeto que las emite. La radioastronomía ha permitido un importante incremento del conocimiento astronómico, particularmente con el descubrimiento de muchas clases de nuevos objetos, incluyendo los púlsares (o magnétares), quásares, las denominadas galaxias activas, radiogalaxias y blázares. Esto es debido a que la radiación electromagnética permite "ver" cosas que no son posibles de detectar en las astronomía óptica. Tales objetos representan algunos de los procesos físicos más extremos y energéticos en el universo.

Este método de observación está en constante desarrollo ya que queda mucho por avanzar en esta tecnología.

Gran parte de la radiación astronómica procedente del espacio (la situada entre 1 y 1000μm) es absorbida en la atmósfera. Por esta razón, los mayores telescopios de radiación infrarroja se construyen en la cima de montañas muy elevadas, se instalan en aeroplanos especiales de cota elevada, en globos, o mejor aún, en satélites de la órbita terrestre.

La astronomía ultravioleta basa su actividad en la detección y estudio de la radiación ultravioleta que emiten los cuerpos celestes. Este campo de estudio cubre todos los campos de la astronomía. Las observaciones realizadas mediante este método son muy precisas y han realizado avances significativos en cuanto al descubrimiento de la composición de la materia interestelar e intergaláctica, el de la periferia de las estrellas, la evolución en las interacciones de los sistemas de estrellas dobles y las propiedades físicas de los quásares y de otros sistemas estelares activos. En las observaciones realizadas con el satélite artificial Explorador Internacional Ultravioleta, los estudiosos descubrieron que la Vía Láctea está envuelta por un aura de gas con elevada temperatura. Este aparato midió asimismo el espectro ultravioleta de una supernova que nació en la Gran Nube de Magallanes en 1987. Este espectro fue usado por primera vez para observar a la estrella precursora de una supernova.

La emisión de rayos x se cree que procede de fuentes que contienen materia a elevadísimas temperaturas, en general en objetos cuyos átomos o electrones tienen una gran energía. El descubrimiento de la primera fuente de rayos x procedente del espacio en 1962 se convirtió en una sorpresa. Esa fuente denominada Scorpio X-1 está situada en la constelación de Escorpio en dirección al centro de la Vía Láctea. Por este descubrimiento Riccardo Giacconi obtuvo el Premio Nobel de Física en 2002.

Los rayos gamma son radiaciones emitidas por objetos celestes que se encuentran en un proceso energético extremadamente violento. Algunos astros despiden brotes de rayos gamma o también llamados BRGs. Se trata de los fenómenos físicos más luminosos del universo produciendo una gran cantidad de energía en haces breves de rayos que pueden durar desde unos segundos hasta unas pocas horas. La explicación de estos fenómenos es aún objeto de controversia.

Los fenómenos emisores de rayos gamma son frecuentemente explosiones de supernovas, su estudio también intenta clarificar el origen de la primera explosión del universo o big bang.

El Observatorio de Rayos Gamma Compton -ya inexistente- fue el segundo de los llamados grandes observatorios espaciales (detrás del telescopio espacial Hubble) y fue el primer observatorio a gran escala de estos fenómenos. Ha sido reemplazado recientemente por el satélite Fermi. El observatorio orbital INTEGRAL observa el cielo en el rango de los rayos gamma blandos o rayos X duros.

A energías por encima de unas decenas de GeV, los rayos gamma sólo se pueden observar desde el suelo usando los llamados telescopios Cherenkov como MAGIC. A estas energías el universo también puede estudiarse usando partículas distintas a los fotones, tales como los rayos cósmicos o los neutrinos. Es el campo conocido como Física de Astropartículas.

Los astrónomos teóricos utilizan una gran variedad de herramientas como modelos matemáticos analíticos y simulaciones numéricas por computadora. Cada uno tiene sus ventajas. Los modelos matemáticos analíticos de un proceso por lo general, son mejores porque llegan al corazón del problema y explican mejor lo que está sucediendo. Los modelos numéricos, pueden revelar la existencia de fenómenos y efectos que de otra manera no se verían.

Los teóricos de la astronomía ponen su esfuerzo en crear modelos teóricos e imaginar las consecuencias observacionales de estos modelos. Esto ayuda a los observadores a buscar datos que puedan refutar un modelo o permitan elegir entre varios modelos alternativos o incluso contradictorios.

Los teóricos, también intentan generar o modificar modelos para conseguir nuevos datos. En el caso de una inconsistencia, la tendencia general es tratar de hacer modificaciones mínimas al modelo para que se corresponda con los datos. En algunos casos, una gran cantidad de datos inconsistentes a través del tiempo puede llevar al abandono total de un modelo.

Los temas estudiados por astrónomos teóricos incluyen: dinámica estelar y evolución estelar; formación de galaxias; origen de los rayos cósmicos; relatividad general y cosmología física, incluyendo teoría de cuerdas.

La astromecánica o mecánica celeste tiene por objeto interpretar los movimientos de la astronomía de posición, en el ámbito de la parte de la física conocida como mecánica, generalmente la newtoniana (Ley de la Gravitación Universal de Isaac Newton). Estudia el movimiento de los planetas alrededor del Sol, de sus satélites, el cálculo de las órbitas de cometas y asteroides. El estudio del movimiento de la Luna alrededor de la Tierra fue por su complejidad muy importante para el desarrollo de la ciencia. El movimiento extraño de Urano, causado por las perturbaciones de un planeta hasta entonces desconocido, permitió a Le Verrier y Adams descubrir sobre el papel al planeta Neptuno. El descubrimiento de una pequeña desviación en el avance del perihelio de Mercurio se atribuyó inicialmente a un planeta cercano al Sol hasta que Einstein la explicó con su Teoría de la Relatividad.

La astrofísica es una parte moderna de la astronomía que estudia los astros como cuerpos de la física estudiando su composición, estructura y evolución. Sólo fue posible su inicio en el siglo XIX cuando gracias a los espectros se pudo averiguar la composición física de las estrellas. Las ramas de la física implicadas en el estudio son la física nuclear (generación de la energía en el interior de las estrellas) y la física relativística. A densidades elevadas el plasma se transforma en materia degenerada; esto lleva a algunas de sus partículas a adquirir altas velocidades que deberán estar limitadas por la velocidad de la luz, lo cual afectará a sus condiciones de degeneración. Asimismo, en las cercanías de los objetos muy masivos, estrellas de neutrones o agujeros negros, la materia que cae se acelera a velocidades relativistas emitiendo radiación intensa y formando potentes chorros de materia.

El estudio del Universo o Cosmos y más concretamente del Sistema Solar ha planteado una serie de interrogantes y cuestiones, por ejemplo cómo y cuándo se formó el sistema, por qué y cuándo desaparecerá el Sol, por qué hay diferencias físicas entre los planetas, etc.

Es difícil precisar el origen del Sistema Solar. Los científicos creen que puede situarse hace unos 4600 millones de años, cuando una inmensa nube de gas y polvo empezó a contraerse probablemente, debido a la explosión de una supernova cercana. Alcanzada una densidad mínima ya se autocontrajo a causa de la fuerza de la gravedad y comenzó a girar a gran velocidad, por conservación de su momento cinético, al igual que cuando una patinadora repliega los brazos sobre si misma gira más rápido. La mayor parte de la materia se acumuló en el centro. La presión era tan elevada que los átomos comenzaron a fusionarse, liberando energía y formando una estrella. También había muchas colisiones. Millones de objetos se acercaban y se unían o chocaban con violencia y se partían en trozos. Algunos cuerpos pequeños (planetesimales) iban aumentando su masa mediante colisiones y al crecer, aumentaban su gravedad y recogían más materiales con el paso del tiempo (acreción). Los encuentros constructivos predominaron y, en sólo 100 millones de años, adquirió un aspecto semejante al actual. Después cada cuerpo continuó su propia evolución.

El Sol es la estrella que, por el efecto gravitacional de su masa, domina el sistema planetario que incluye a la Tierra. Es el elemento más importante en nuestro sistema y el objeto más grande, que contiene aproximadamente el 98% de la masa total del sistema solar. Mediante la radiación de su energía electromagnética, aporta directa o indirectamente toda la energía que mantiene la vida en la Tierra. Saliendo del Sol, y esparciéndose por todo el Sistema solar en forma de espiral tenemos al conocido como viento solar que es un flujo de partículas, fundamentalmente protones y neutrones. La interacción de estas partículas con los polos magnéticos de los planetas y con la atmósfera genera las auroras polares boreales o australes. Todas estas partículas y radiaciones son absorbidas por la atmósfera. La ausencia de auroras durante el Mínimo de Maunder se achaca a la falta de actividad del Sol.

A causa de su proximidad a la Tierra y como es una estrella típica, el Sol es un recurso extraordinario para el estudio de los fenómenos estelares. No se ha estudiado ninguna otra estrella con tanto detalle. La estrella más cercana al Sol está a 4,3 años luz.

El Sol (todo el Sistema Solar) gira alrededor del centro de la Via Láctea, nuestra galaxia. Da una vuelta cada 200 millones de años. Ahora se mueve hacia la constelación de Hércules a 19 Km./s. Actualmente el Sol se estudia desde satélites, como el Observatorio Heliosférico y Solar (SOHO), dotados de instrumentos que permiten apreciar aspectos que, hasta ahora, no se habían podido estudiar. Además de la observación con telescopios convencionales, se utilizan: el coronógrafo, que analiza la corona solar, el telescopio ultravioleta extremo, capaz de detectar el campo magnético, y los radiotelescopios, que detectan diversos tipos de radiación que resultan imperceptibles para el ojo humano.

La parte visible del Sol está a 6.000 °C y la corona, más alejada, a 2000000 °C. Estudiando al Sol en el ultravioleta se llegó a la conclusión de que el calentamiento de la corona se debe a la gran actividad magnética del Sol. Los límites del Sistema Solar vienen dados por el fin de su influencia o heliosfera, delimitada por un área denominada Frente de choque de terminación o Heliopausa.

El estudio del Sol se inicia con Galileo Galilei de quien se dice que se quedó ciego por observar los eclipses. Hace más de cien años se descubre la espectroscopia que permite descomponer la luz en sus longitudes de onda, gracias a esto se puede conocer la composición química, densidad, temperatura, situación los gases de su superficie, etc. En los años 50 ya se conocía la física básica del Sol, es decir, su composición gaseosa, la temperatura elevada de la corona, la importancia de los campos magnéticos en la actividad solar y su ciclo magnético de 22 años.

Las primeras mediciones de la radiación solar se hicieron desde globos hace un siglo y después fueron aviones y dirigibles para mejorar las mediciones con aparatos radioastronómicos. En 1914, C. Abbot envió un globo para medir la constante solar (cantidad de radiación proveniente del sol por centímetro cuadrado por segundo). En 1946 el cohete V-2 militar ascendió a 55 km. con un espectrógrafo solar a bordo; este fotografió al sol en longitudes de onda ultravioletas. En 1948 (diez años antes de la fundación de la NASA) ya se fotografió al Sol en rayos X. Algunos cohetes fotografiaron ráfagas solares en 1956 en un pico de actividad solar.

En 1960 se lanza la primera sonda solar denominada Solrad. Esta sonda monitoreó al sol en rayos x y ultravioletas, en una longitud de onda muy interesante que muestra las emisiones de hidrógeno; este rango de longitud de onda se conoce como línea Lyman α. Posteriormente se lanzaron ocho observatorios solares denominados OSO. El OSO 1 fue lanzado en 1962. Los OSO apuntaron constantemente hacia el Sol durante 17 años y con ellos se experimentaron nuevas técnicas de transmisión fotográfica a la tierra.

El mayor observatorio solar ha sido el Skylab. Estuvo en órbita durante nueve meses en 1973 y principios de 1974. Observó al Sol en rayos g, X, ultravioleta y visible, y obtuvo la mayor cantidad de datos (y los mejor organizados) que hayamos logrado jamás para un objeto celeste. En 1974 y 1976 las sondas Helios A y B se acercaron mucho al Sol para medir las condiciones del viento solar. No llevaron cámaras.

En 1980 se lanzó la sonda Solar Max, para estudiar al Sol en un pico de actividad. Tuvo una avería y los astronautas del Columbia realizaron una complicada reparación.

George Ellery Hale descubrió en 1908 que las manchas solares (áreas más frías de la fotosfera) presentan campos magnéticos fuertes. Estas manchas solares se suelen dar en parejas, con las dos manchas con campos magnéticos que señalan sentidos opuestos. El ciclo de las manchas solares, en el que la cantidad de manchas solares varía de menos a más y vuelve a disminuir al cabo de unos 11 años, se conoce desde principios del siglo XVIII. Sin embargo, el complejo modelo magnético asociado con el ciclo solar sólo se comprobó tras el descubrimiento del campo magnético del Sol.

En el núcleo del Sol hay hidrógeno suficiente para durar otros 4.500 millones de años, es decir, se calcula que está en plenitud, en la mitad de su vida. Tal como se desprende de la observación de otros astros parecidos, cuando se gaste este hidrógeno combustible, el Sol cambiará: según se vayan expandiendo las capas exteriores hasta el tamaño actual de la órbita de la Tierra, el Sol se convertirá en una gigante roja, algo más fría que hoy pero 10.000 veces más brillante a causa de su enorme tamaño. Sin embargo, la Tierra no se consumirá porque se moverá en espiral hacia afuera, como consecuencia de la pérdida de masa del Sol. El Sol seguirá siendo una gigante roja, con reacciones nucleares de combustión de helio en el centro, durante sólo 500 millones de años. No tiene suficiente masa para atravesar sucesivos ciclos de combustión nuclear o un cataclismo en forma de explosión, como les ocurre a algunas estrellas. Después de la etapa de gigante roja, se encogerá hasta ser una enana blanca, aproximadamente del tamaño de la Tierra, y se enfriará poco a poco durante varios millones de años.

Una de las cosas más fáciles de observar desde la Tierra y con un telescopio simple son los objetos de nuestro propio Sistema Solar y sus fenómenos, que están muy cerca en comparación de estrellas y galaxias. De ahí que el aficionado siempre tenga a estos objetos en sus preferencias de observación.

Los eclipses y los tránsitos astronómicos han ayudado a medir las dimensiones del sistema solar.

Dependiendo de la distancia de un planeta al Sol, tomando la Tierra como observatorio de base, los planetas se dividen en dos grandes grupos: planetas interiores y planetas exteriores. Entre estos planetas encontramos que cada uno presenta condiciones singulares: la curiosa geología de Mercurio, los movimientos retrógrados de algunos como Venus, la vida en la Tierra, la curiosa red de antiguos ríos de Marte, el gran tamaño y los vientos de la atmósfera de Júpiter, los anillos de Saturno, el eje de rotación inclinado de Urano o la extraña atmósfera de Neptuno, etc. Algunos de estos planetas cuentan con satélites que también tienen singularidades; de entre estos, el más estudiado ha sido la Luna, el único satélite de la Tierra, dada su cercanía y simplicidad de observación, conformándose una historia de la observación lunar. En la Luna hallamos claramente el llamado intenso bombardeo tardío, que fue común a casi todos los planetas y satélites, creando en algunos de ellos abruptas superficies salpicadas de impactos.

Los llamados planetas terrestres presentan similitudes con la Tierra, aumentando su habitabilidad planetaria, es decir, su potencial posibilidad habitable para los seres vivos. Así se delimita la ecósfera, un área del sistema solar que es propicia para la vida.

Más lejos de Neptuno encontramos otros planetoides como por ejemplo el hasta hace poco considerado planeta Plutón, la morfología y naturaleza de este planeta menor llevó a los astrónomos a cambiarlo de categoría en la llamada redefinición de planeta de 2006 aunque posea un satélite compañero, Caronte. Estos planetas enanos, por su tamaño no pueden ser considerados planetas como tales, pero presentan similitudes con éstos, siendo más grandes que los meteoros. Algunos son: Eris, Sedna o 1998 WW31, este último singularmente binario y de los denominados cubewanos. A todo este compendio de planetoides se les denomina coloquialmente objetos o planetas transneptunianos. También existen hipótesis sobre un planeta X que vendría a explicar algunas incógnitas, como la ley de Titius-Bode o la concentración de objetos celestes en el acantilado de Kuiper.

Entre los planetas Marte y Júpiter encontramos una concentración inusual de asteroides conformando una órbita alrededor del sol denominada cinturón de asteroides.

En órbitas dispares y heteromorfas se encuentran los cometas, que subliman su materia al contacto con el viento solar, formando colas de apariencia luminosa; se estudiaron en sus efímeros pasos por las cercanías de la Tierra los cometas McNaught o el Halley. Mención especial tienen los cometas Shoemaker-Levy 9 que terminó estrellándose contra Júpiter o el 109P/Swift-Tuttle, cuyos restos provocan las lluvias de estrellas conocidas como Perseidas o lágrimas de San Lorenzo. Estos cuerpos celestes se concentran en lugares como el cinturón de Kuiper, el denominado disco disperso o la nube de Oort y se les llama en general cuerpos menores del Sistema Solar.

En el Sistema Solar también existe una amplísima red de partículas, meteoros de diverso tamaño y naturaleza, y polvo que en mayor o menor medida se hallan sometidos al influjo del efecto Poynting-Robertson que los hace derivar irremediablemente hacia el Sol.

El campo gravitatorio del Sol es el responsable de que los planetas giren en torno a este. El influjo de los campos gravitatorios de las estrellas dentro de una galaxia se denomina marea galáctica.

Tal como demostró Einstein en su obra Relatividad general, la gravedad deforma la geometría del espacio-tiempo, es decir, la masa gravitacional de los cuerpos celestes deforma el espacio, que se curva. Este efecto provoca distorsiones en las observaciones del cielo por efecto de los campos gravitatorios, haciendo que se observen juntas galaxias que están muy lejos unas de otras. Esto es debido a que existe materia que no podemos ver que altera la gravedad. A estas masas se las denominó materia oscura.

Encontrar materia oscura no es fácil ya que no brilla ni refleja la luz, así que los astrónomos se apoyan en la gravedad, que puede curvar la luz de estrellas distantes cuando hay suficiente masa presente, muy parecido a cómo una lente distorsiona una imagen tras ella, de ahí el término lente gravitacional o anillo de Einstein. Gracias a las leyes de la física, conocer cuánta luz se curva dice a los astrónomos cuánta masa hay. Cartografiando las huellas de la gravedad, se pueden crear imágenes de cómo está distribuida la materia oscura en un determinado lugar del espacio. A veces se presentan anomalías gravitatorias que impiden realizar estos estudios con exactitud, como las ondas gravitacionales provocadas por objetos masivos muy acelerados.

Los agujeros negros son singularidades de alta concentración de masa que curva el espacio, cuando éstas acumulaciones masivas son producidas por estrellas le les denomina agujero negro estelar; esta curva espacial es tan pronunciada que todo lo que se acerca a su perímetro es absorbido por este, incluso la luz (de ahí el nombre). El agujero negro Q0906+6930 es uno de los más masivos de los observados. Varios modelos teóricos, como por ejemplo el agujero negro de Schwarzschild, aportan soluciones a los planteamientos de Einstein.

La astronomía cercana abarca la exploración de nuestra galaxia, por tanto comprende también la exploración del Sistema Solar. No obstante, el estudio de las estrellas determina si éstas pertenecen o no a nuestra galaxia. El estudio de su clasificación estelar determinará, entre otras variables, si el objeto celeste estudiado es "cercano" o "lejano".

Tal como hemos visto hasta ahora, en el Sistema Solar encontramos diversos objetos (v. El Sistema Solar desde la astronomía) y nuestro sistema solar forma parte de una galaxia que es la Vía Láctea. Nuestra galaxia se compone de miles de millones de objetos celestes que giran en espiral desde un centro muy denso donde se mezclan varios tipos de estrellas, otros sistemas solares, nubes interestelares o nebulosas, etc. y encontramos objetos como IK Pegasi, Tau Ceti o Gliese 581 que son soles cada uno con determinadas propiedades diferentes.

La estrella más cercana a nuestro sistema solar es Alpha Centauri que se encuentra a 4,3 años luz. Esto significa que la luz procedente de dicha estrella tarda 4,3 años en llegar a ser percibida en La Tierra desde que es emitida.

Estos soles o estrellas forman parte de numerosas constelaciones que son formadas por estrellas fijas aunque la diferencia de sus velocidades de deriva dentro de nuestra galaxia les haga variar sus posiciones levemente a lo largo del tiempo, por ejemplo la estrella polar. Estas estrellas fijas pueden ser o no de nuestra galaxia.

La astronomía lejana comprende el estudio de los objetos visibles fuera de nuestra galaxia, donde encontramos otras galaxias que contienen, como la nuestra, miles de millones de estrellas a su vez. Las galaxias pueden no ser visibles dependiendo de si su centro de gravedad absorbe la materia (v. agujero negro), son demasiado pequeñas o simplemente son galaxias oscuras cuya materia no tiene luminosidad. Las galaxias a su vez derivan alejándose unas de otras cada vez más, lo que apoya la hipótesis de que nuestro universo actualmente se expande.

Las galaxias más cercanas a la nuestra (aproximadamente 30) son denominadas el grupo local. Entre estas galaxias se encuentran algunas muy grandes como Andrómeda, nuestra Vía Láctea y la Galaxia del Triángulo.

Cada galaxia tiene propiedades diferentes, predomino de diferentes elementos químicos y formas (espirales, elípticas, irregulares, anulares, lenticulares, en forma de remolino, o incluso con forma espiral barrada entre otras más sofisticadas como cigarros, girasoles, sombreros, etc.).

La cosmología en rasgos generales estudia la historia del universo desde su nacimiento. Hay numerosos campos de estudio de esta rama de la astronomía. Varias investigaciones conforman la cosmología actual, con sus postulados, hipótesis e incógnitas.

La cosmología física comprende el estudio del origen, la evolución y el destino del Universo utilizando los modelos terrenos de la física. La cosmología física se desarrolló como ciencia durante la primera mitad del siglo XX como consecuencia de diversos acontecimientos y descubrimientos encadenados durante dicho período.

A lo largo de la historia de toda la humanidad ha habido diferentes puntos de vista con respecto a la forma, conformación, comportamiento y movimiento de la tierra, hasta llegar al punto en el que vivimos hoy en día. Actualmente hay una serie de teorías que han sido comprobadas científicamente y por lo tanto fueron aceptadas por los científicos de todo el mundo. Pero para llegar hasta este punto, tuvo que pasar mucho tiempo, durante el cual coexistieron varias teorías diferentes, unas más aceptadas que otras. A continuación se mencionan algunas de las aportaciones más sobresalientes realizadas a la Astronomía.

Al principio



Astronomía árabe

Los árabes mantendrán viva la llama del saber, durante la nefasta época del oscurantismo europeo. Los estudios astronómicos interesaron tanto a matemáticos, viajeros, hombres de religión y al hombre común ya que su religión y el Corán tienen abundantes referencias al Sol la Luna y las estrellas. Aparecieron observatorios públicos y privados por todas partes. La astrología era considerada como ciencia y los soberanos tenían sus astrólogos personales que guiaban muchas de las decisiones de estado.

Basadas en las observaciones babilónicas, se construyeron las llamadas tablas astronómicas, en las que se encontraban las posiciones y el movimientos de los cuerpos celestes. Estas observaciones, junto con las realizadas por iraníes, hindúes y griegos, llevaron a un nuevo cálculo de los movimientos celestes y a una astronomía matemática muy evolucionada que practicaron Al Biruni y la escuela de Maraga en Persia con Nasir Al Dinturí. Estos nuevos cálculos llevarían posteriormente a una revisión de la astronomía de Ptolomeo.

Alzarcalí, conocido por los latinos como Azarquiel, era toledano y allí sirvió y trabajó poco antes de que la secular capital de tantos gobiernos cayera en manos del rey cristiano Alfonso VI de Castilla y León. Su pérdida supuso el despertar para los confiados príncipes musulmanes.

Sin embargo para el occidente europeo la toma de Toledo fue el inicio del desertar cultural. Junto a la Sicilia normando-árabe, Toledo fue la más importante puerta de entrada de la cultura árabe en Europa. Pasó a la custodia cristiana tras su conquista por Alfonso VI con todos sus focos culturales intactos: eruditos, artistas y bibliotecas. Era también Toledo emporio de la erudición judía. Sin los hebreos, que se sentían en casa con ambos mundos: islámico y cristianos, no hubiera podido desempeñar su papel de mediador cultural. Ellos traducirían del árabe al romance y luego el estudioso cristiano vertía su traducción al latín.

Pronto las posibilidades de Toledo atraen a eruditos de todos los países cristiano-romanos en busca de desconocidos tesoros de sabiduría.

Todo este gran movimiento de traducciones fue promovido y protegido por el rey Alfonso X el Sabio, que persigue la meta de hacer de su corte un centro de las ciencias y las artes similar al de los príncipes árabes. Presta fundamental atención a las ciencias cosmológicas, pero también se ocupa del ajedrez, la historia, la religión y manda que se traduzca al castellano, no al latín, buscando cultivar al pueblo llano.

En el campo concreto de la astronomía, sus tablas alfonsinas perviven en Europa hasta el s. XVII.

Se ha dicho que la ciencia árabe fue mera imitación de la del Imperio Bizantino o del mundo clásico. Se ha dicho también que la ciencia árabe-española fue imitación de la ciencia árabe-oriental. Hoy se puede demostrar que no es cierto en absoluto.

Las aportaciones astronómicas árabes llegan con claridad hasta fines del s. XV. Fueron cinco siglos en los que el islam creó y transmitió ciencia a los deprimidos estados europeos medievales. Sus astrolabios, cuadrantes, dióptricos y brújulas están en los estantes de nuestros museos. Pero lo que es aún más importante, es que los principales astrónomos y matemáticos que inauguran la nueva época de las ciencias: Copérnico, Tycho Brahe, Kepler, Galileo y Newton bebieron en las fuentes de Alfarganí, Alzarcalí, y Albatani.

Al principio



Astronomía de posición

La Astrometría o Astronomía de posición es la parte de la astronomía que se encarga de medir y estudiar la posición, paralajes y el movimiento propio de los astros. Es una disciplina muy antigua, tanto como la astronomía.

A pesar de que casi son sinónimos, consideraremos la astrometría como la parte experimental o técnica que permite medir la posición de los astros y los instrumentos que la hacen posible, mientras la Astronomía de posición usa la posición de los astros para elaborar un modelo de su movimiento o definir los conceptos que se usan. Sería pues la parte teórica. Hemos englobado las dos partes en la misma categoría. Esta parte de la astronomía no es obsoleta porque la teoría forma parte de los rudimentos de la ciencia mientras la práctica intenta medir con mucha precisión la posición de los astros usando medios modernos como el satélite Hipparcos.

La astronomía de posición tiene pues por objeto situar en la esfera celeste la posición de los astros midiendo determinados ángulos respecto a unos planos fundamentales.

Se encarga pues de definir los distintos tipos de coordenadas astronómicas y sus relaciones. También se encarga de definir conceptos fundamentales de la astronomía.

Describe el movimiento de los astros, planetas, satélites y fenómenos como los eclipses y tránsitos de los planetas por el disco del Sol. También estudia el movimiento diurno y el anual del Sol y las estrellas. Son tareas fundamentales de la misma la determinación de la hora y la determinación para la navegación de las coordenadas geográficas.

Al principio



Source : Wikipedia